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Portent of Heine’s Reciprocal Square Root Identity 

Howard S. Cohl 
Defense and Nuclear Technology Directorate, 
Lawrence Livemore National Laboratory, Livermore, CA, 94500, 
U.S.A. 

Abstract. Precise efforts in theoretical astrophysics are needed to fully 
understand the mechanisms that govern the structure, stability, dynam- 
ics, formation, and evolution of differentially rotating stars. Direct com- 
putation of the physical attributes of a star can be facilitated by the use 
of highly compact azimuthal and separation angle Fourier formulations 
of the Green’s functions for the linear partial differen’tial equations of 
mathematical physics. 

1. Introduction 

Solutions to the three dimensional inhomogeneous linear partial differential 
equations of mathematical physics are expressible in terms their appropriate 
Green’s functions (Duffy 2001). Single, double, and triple eigenfunction inte- 
gration and summation expressions for Green’s functions are obtainable in the 
coordinate systems that allow for separation of variables (Morse & Feshbach 
1953). Separation of variables maps the linear three dimensional homogeneous 
partial differential equations into three decoupled ordinary differential equations 
(Miller 1977). Important linear 3D partial differential equations of mathematical 
physics include the Laplace equation, the Helmholtz equation, the biharmonic 
equation, the wave equation, the diffusion equation and the Schroedinger equa- 
tion. The properties of R-separability for these partial differential equations 
are reflected in the Green’s function expansions. In the rotationally invariant 
coordinate systems that R-separably solve these equations, new discrete Fourier 
representations exist for the Green’s functions for the Laplace equation (Cohl et 
al. 2000). Discrete Fourier expansions, given in terms of the azimuthal and s e p  
aration angles, must exist for the rest of the linear partial differential equations 
of mathematical physics. The coefficients of these discrete Fourier representa- 
tions will be given in terms of identifiable transcendental functions obtained by 
reversing and collapsing Green’s function expansions for these partial differential 
equations. The fundamental mathematical tools required in order to complete 
this investigation are commonly available in the mathematics and physics liter- 
ature. 

The Green’s function for Laplace’s equation is 

I 



2 Cohl 

where x and x’ are given by the Cartesian coordinates (z,y,z) and (Z’,Y‘,Z’). 
Traditionally, the Green’s function is expanded in terms of spherical harmonics 

in spherical (r, $,e) coordinates, where r< (r,) is the smaller (larger) of the 
distances r and r‘, cos7 = C O S ~ C O S ~ ’  + sinOsinO’cos(4 - $ I ) ,  and Pt is the 
Legendre polynomial of the first kind. 

By utilizing Heine’s toroidal identity (Cohl & Tohline 1999, Cohl et al. 
2000, Cohl et al. 2001): 

where 151 2 1, and, 0 5 $ 5 27r, one can derive two highly.compact Fourier 
series representations for the Green’s function of Laplace’s equation 

in spherical and cylindrical (R, 4, z )  coordinates respectively. Similar discrete 
Fourier transform expressions must exist for the linear partial differential equa- 
tions of mathematical physics. Algorithmic implementation of compact Fourier 
representations for the Green’s functions of mathematical physics significantly 
improves the accuracy of the solution for these partial differential equations. 

2. 

One may also express potential problems in terms of an inhomogeneous bihar- 
monk equation whose source is proportional to the Laplacian of the density. The 
solution is expressible in terms of an integral of it’s Green’s function, IX - ~ ’ 1 ,  
convolved with source. The resulting inhomogeneous biharmonic equation 

The Biharmonic, Triharmonic, and Higher Harmonic Equations 

0 4 @ ( x )  = 4 r  0 2 p ( x ) ,  (6) 

where V2 is the Laplacian, represents the solution to the potential problem over 
the infinite three-dimensional domain. The Green’s function for the biharmonic 
equation (Vautherin 1972) 

“...The set of six coordinates (x, x’} may be viewed either as defining two points relative to the 
origin or as the coordinates of a three-body system once the center of mass has been separated. 
In the body frame, three out of the six coordinates are dynamicd variables, the potential energy 
depending on on them.” (Cohl et al. 2001) 
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is a much better behaved integration kernel than for Laplace's equation because 
the singularity has been moved to infinity through 

q x )  = -1 J d3x' v' 2p(x') Ix -XI[.  (8) 2 

One can generalize Heine's reciprocal square root identity using (Abramowitz 8~ 
Stegun, 1965; Gradshteyn & Ryzhik 1994) 

and by integrating both sides of eq. (2) with respect to <. Performing the 
integrations over C we obtain the following general result for any integer n - 
generalizing the last expression the bottom of p. 182 in Magnu?, Oberhettinger, 
& Soni (1966) (see also eqs. (26) & (30) in Cohl et al. 2000) 

which reduces for n = 1 to 

Using this expression, we can rewrite the Green's function for the biharmonic 
equation in two different ways 

and 

where 

' 4 5  [(P - RQ)2 + 2(R2 f R'2)(2 - z')2 + (2 - z ) ] 
2 n m  

Q =  

This new formulation is amenable in analytic and computational physics appli- 
cations on high-performancecomputing architectures, since Laplacians can be 
readily computed on computational fluid dynamics meshes. Higher order har- 
monic Green's function expansions can be generated using this method. Bound- 
ary values can now be computed effectively along an arbitrarily chosen z-axis 
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(m = 0) and at values chosen to lie within the outer-most extent of a chosen vol- 
umetric region (m 2 0). Physical solution of the interior inhomogeneous prob- 
lem can be obtained by proper boundary value treatment as described above. 
Accelerations can be obtained from the potential by performing a precise nu- 
merical gradient. In the case of cylindrical and spherical coordinates, the three 
dimensional Poisson solve can be further facilitated through the use of a dis- 
crete azimuthal Fourier transform. This decouples the three dimensional Pois- 
son problem into a set of decoupled 2 D  problems that can be solved with second 
order accurate finite differencing using either direct or iterative methods. 

3. Applications 

Using highly compact representations of infinite domain Green’s functions, solu- 
tions to the linear partial differential equations of mathematical physics can be 
more easily obtained. In this paper, and in recent papers, we treat the Green’s 
function for the Laplace equation. Here we have extended this result to the 
three dimensional biharmonic and higher harmonic equations. Further variants 
are possible for the 3 D  Helmholtz, wave, and diffusion equations. In the future, 
we intend to investigate and more precisely describe these new Green’s function 
expansions. Many areas of theoretical physics will benefit greatly fiom precise 
numerical implementations of these compact expansions. 

Azimuthal Fourier identities for potentials such as Coulomb IX - x’1-l or 
Yukawa e-klx-x‘IIx - i 1 - l  lead to new classical and quantum energy theorems. 
These allow for rapid and precise evaluation of the Coulomb or Yukawa di- 
rect and exchange interactions (Cohl et al. 2001). Classical Yukawa eigenfunc- 
tions are obtained through transcendental function identification of the Lamb- 
Sommerfeld integral (see Magnus et d. 1966). In quantum physics this is ac- 
complished through the use of the azimuthal selection rule for the self-energies, 
namely for the direct and exchange Hamiltonian elements only the m = 0 and 
m = ml - m2 terms survive respectively. The application of the selection rule 
allows for exact evaluation of the Hamiltonian matrix elements for two-electron 
interactions in atomic physics, molecular physics, condensed matter physics, 
physical chemistry and biology. Two-electron interactions are critically impor- 
tant in obtaining opacities and correct equations of state in astrophysically dense . 
atomic and molecular fluid media. Magnetohydrodynamic problems can now be 
easily handled with Heine expansions for the Green’s functions of potential the- 
ory. By expressing the equations of fluid dynamics of a compressible media in 
terms of a velocity potential and a vector Poisson equation, one may compute 
precise velocity boundary values in vortex and shock flow regions (Lamb 1932) 
by solving the appropriate Poisson problem. Radiation transport, classical and 
quantum scattering, will be greatly facilitated through compact Poisson formu- 
lations of the Green’s function for the 3 D  diffusion and Helmholtz equations. 
Precise Coulomb and Yukawa energies in the nuclear Hamiltonian allow for a 
higher degree of precision in obtaining nuclear structure. 
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4. Conclusion 

The ultimate resolution of these analytical investigations will be efficient algo- 
rithmic implementations of these new schemes. We propose these methods to 
the three dimensional star community in hope that you may continue to enjoy 
significantly improved economical and precise boundary values for studies of 
analytical and numerical three dimensional stellar astrophysics. 
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A 

The unit order negative one half degree Legendre function of the second kind 
can be expressed as 

Expressions for Unit Order Toroidal Functions 

where E is the complete elliptic integral of the second kind. The unit order, 
positive one half degree Legendre function can be expressed as 

where K is the complete elliptic integral of the first kind. We can express this 
same function in terms of the complete elliptic integral D ' 

as well. Higher degree, unit order toroidal functions of the second kind can be 
easily derived using the following recurrence relation, 

This work was performed under the auspices of the U.S. Department of Energy by the University 
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 
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